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SUMMARY

Problem 4006 - Cross Correlation Matrix by FFT

The problem aim was to produce a computer program for determining

cross correlations of geosynchronous satellite images by means of a two-

dimensional Fast Fourier Transform. Features to be addressed in deciding

'1i  on the coding for the program were accuracy and speed.

A computer program has been written which reads data from a perman-

ent file, sets up arrays of specified size, and at the user's option smooths
2

the edges of the tw-dimensional array via a cos weighting method. The

program then uses our two-dimensional FFT algorithm to compute the cross

correlation matrix for the two arrays. An option is available which searches

by row and column to locate the maximum entry in the row/column in the hope

that this information will indicate the width of the peaks.

The algorithm used in our routine was bench-marked against three

commonly used FFT's. In the most competitive case, our routine was

approximately 5 times faster; in the least competitive, we were approximate-

ly 20 times faster.

Test data were generated and run. The output was fully consistent

with theoretical analyses. The test case corresponded to a two-dimensional

square wave. This was chosen for its simplicity of structure, while at

the same time providing a solid check on the accuracy and working order of

the algorithm.

While the computer program was being developed, alternative

approaches were investigated. Specific attention was given to methods which

would portentially increase processing speed. The contemporary journals on

information and image processing contain an abundance of references to

Walsh, Haar and other orthogonal families of functions. The great strength
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II
of the Walsh and Haar transforms is the decrease in processing times by

factors of 2-20 over comparable times using the FFT algorithm. After

detailed study it was decided that these methods could not profitably be

applied to this problem at this time. The principal drawback is the state

of the art in interpreting and decoding the convolution and deconvolution

via the discrete fast Haar and fast Walsh transforms. Furthermore, since

the transform variable space does not have the same "intuitively pleasing"

relationship as do time and frequency (Fourier transform pairs), it is not

at all obvious which way the interpretations should (or could) be pursued.

8
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Let f(x) be a continuous function of a real variable x. The

Fourier transform of f(x), denoted by 3 f(x)j , is defined by the equation

!3f(x) - F(u)j- f(x) exp j2uux dx (1-1)

where J

Given F(u), f(x) can be obtained by using the inverse Fourier

AI transform

IF(u) - f()

f F(u) exp 2nu du (1-2)

Equations (1-1) and (1-2), which are called the Fourier transform pair, can

be shown to exist if f(x) is continuous and integrable and F(u) is integrable.

These conditions are almost always satisfied in practice.

We will be concerned with functions f(x) which are real. The

Fourier transform of a real function, however, is generally complex; that is,

F(u) - R(u) + jI(u) (1-3)

where R(u) and I(u) are, respectively, the real and imaginary components of

F(u). It is often convenient to express Eq. (1-3) inexponential form:

F(u) = IF(u)I ejo(u) (1-4)

where Fru~j R [2 (u) + 12 (u) ]1/2 (1-5)

)and 0(u) - tan 1  (U) (1-6)

11



The magnitude function F(u) is called the Fourier spectrum of f(x), and ( (u)

its phase angle. The square of the spectrum

E(u)-f F(u) 2-R2 (u) + 12 (u) (1-7)

is comaonly referred to as the energy spectrum of f(x).

The variable u appearing in the Fourier transform is often called

the frequency variable. This name arises from the fact that, using Euler's

formula, the exponential term, exp [-j2Ttux], may be expressed in the form:

exp [-2nux] = cos 2uux] cos 2iTux - j sin 2iTux (1-8)

If we interpret the integral in Eq. (1-1) as a limit-summation of discrete

terms, it is evident that F(u) is composed of an infinite sum of sine and

cosine terms, and that each value of u determines the frequency of its

corresponding sine-cosine pair.

For the step function shown in Fig 1 its Fourier transform is ob-

tained from Eq. (1-1) as follows:

* (OD
F(u) J f(x) exp [-J 2rTux] dx

-00O

f A exp [-j2Tux] dx
0

= sin (TuX) e -

Tt u

which is a complex function.

12

.. . .. 6 11 .. .iA.2,...N I



Ax) IF~u7

AA

AU

_ JIX -2/X -JIX 0 IIX 2/X FIX
0 X

(a) (b)

Figure 1. A step function and its Fourier spectrum.

The Fourier transform can be easily extended to a function f(x,y)

of two variables. If f(x,y) is continuous and integrable, and F(uv) is

integrable, we have that the fillowing Fourier transform pair exists:

F j f(x, y) F F(u. v) f (x,y) exp [-j 2TE(ux + vy) ] dx dy (1-9)

and F-1  F(u,v) -f(x,y) .3] F(u,v) exp, EIjr(ux + vy) I du dv (1-10)

where u and v are the frequency variables.

As in the one-dimensional case, the Fourier spectrum, phase, and

energy spectrum are, respectively, given by the relations:

F(u,v) - R2 (u'v) + I2 (u'v)]1/ (1-11)

0(u,v) tan - I R Iu,v) 1 (1-12)

and E(u,v) R 2(u,v) + 1I (u'v) (1-13)

13



Example: The Fourier transform of the function shown in Fig. 2(a) is given

by:Of

F(u'v) - f5 f(x.y) exp [-j 2Tt(ux + vy)]I dx dy

= AX sin(uuX) eTu sin (TuvY) eJ'Y

(TtuX) (TIvY)

IF(M. 0)I

(a)(b

Figure 2(a).

* A two-dimensional function, (b) its Fourier spectrum.

The spectrum is given by

fF(u,v) ( X i (TEUX) sin(vY
s(TEUX) si(TtVY)

A plot of this is shown in Fig. 2(b) in three-dimensional perspective.

14



THE DISCRETE FOURIER TRANSFORM

Let us now assume that a continuous function f(x) is discretized into

a sequence if(xo), f(x ° + x), f(x0 + 2Ax), ... , f(x ° + IN - 1] Ax)I by

taking N samples Ax units apart, and that we define

f(x) - f(x + xAx) (2-1)

0

where x now assumes the discrete values 0, 1, 2, ... , N - 1. In other words,

the sequency tf(O), f(l), f(2), ... , f(N - i)I will be used to denote any

N uniformly spaced samples from a corresponding continuous function.

With the above notation in mind, we have that discrete Fourier trans-

form pair that applies to sampled functions is given by

N-1
F(u) - E f(x) exp [-j2ux/N] (2-2)

X=O

for u = 0, 1, 2, ... , N - 1, and

N-1
f(x) - £ F(u) exp [ j2nux/Nj (2-3)

U=O

for x = 0, 1, 2, ..., N-i.

The values of u - 0, 1, 2, ... , N-i in the discrete Fourier transform

given in Eq. (2-2) correspond to samples of the continuous transform at

values 0, Au, 2Au, ..., (N-l)Au. In other words we are letting F(u) repre-

sent F(uAu). This notation is similar tothat used for the discrete f(x),

with the exception that the samples of F(u) start at the origin of the fre-

quency axis. It can be shown that Au and Au are related by the expression

U 1 (2-4)
1NAx

15



For the two variable case the discrete Fourier transform pair is

given by the equations

M-I N-i
F(uv) - 1 f(x y) exp [-j2T(ux/M + vy7N)] (2-5)MNiiix-° y-o

for u = 0, 1, 2, ... M - 1, v - 0, 1, 2, ... , N - 1, and

M-i N-1
f(xy) = E F(u,v) exp [j2TE(ux/M + vy?N)] (2-6)

IU=O V=O

for x = 0, 1, 2, ... , N - 1 and y - 0, 1, 2, IN - 1.

Sampling of a continuous function is now in a two-dimensional grid

with divisions of width Ax and Ay in the x and y axis, respectively. As in

the on-dimensional case, the discrete function f(x,y) represents samples of

the function f(x° + xAx, Yo + yAy) for x-0, 1, 2, ... , M - 1 and y -

0, 1, 2, ... , N - 1. Si'ailar coments hold for F(u,v). The sampling

increments in the spatial and frequency domains are related by

u M 1 (2-7)
MAX

and
V W 1 (2-8)

NAy

When images are sampled in a square array M - N and

1 N-i N-I
F(u,v) = E f(xy) exp I-j2rr(ux + vy) / N] (2.9)

XO y=o

for u, v = 0, 1, 2, ... , N - 1 and

N-eI N-i
f(x,y) = E E F(u,v) exp [j2u(ux + vy) / N] (2.10)

U=O VMO

for x, y - 0, 1, 2, ..., N -1. Note that in the case we have included a I/N

term in both expressions. Since F(u,v) and f(x,y) are a Fourier transform

pair, the grouping of these constant multiplicative terms is arbitrary.

16



EXAMPLE: As an illustration of the use of Eqs. (2-2) and (2-3), consider

the functions shown in Fig. 5(a). If this function is sampled at the argu-

ment values x 0- 0.5, xl - 0.75, x 2 - 10,x - 1.25, and if the argument is

redefined as discussed above, we obtain the discrete function shown in

Fig. 3(b).

4 Ax) fix) - Axo+ xlix)

fixoe~lx) flzo+3ix)

fZx0) (b) 2j1

0 .25 .S0 .75 1.00 1.25 0* 2 3
Z 0  X3 IX 2 S3

Figure 3.

A simple function and samples in the x domain.
In (a) x-is a continuous variable; in (b) x is
discrete.

Application of Eq. (2-2) yields the following:

1
F(0) E f(x) exp [0]

x=O

* f(O) + f(l) + f(2) + M() = 3.25

F(l) E 1 ~ x exp [-j2Ttx/4]

x=O

- [2e" + 3e -JTE/2 + 4e -JTt + 4e -j3TE/21 1 [-2+jII.

44
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Notice that all values of f(x) contribute to each of the four terms

of the discrete Fourier transform. Conversely, all terms of the transform

contribute in forming the inverse transform.

SOME PROPERTIES OF THE TWO-DIMENSIONAL FOURIER TRANSFORM

While our primary interest is in two-dimensional, discrete transforms,

the underlying concepts of some of these properties are much easier to grasp

is they are presented in their one-dimensional, continuous form.

PERIDIOCITY AND CONJUGATE SYMMETRY

The discrete Fourier transform and its inverse are periodic with

period N; that is,

F(u,v) = F(u + N, v) - F(u,v + N) - F(u + N, v + N) (3.1)

Although Eq. (3-1) points out that F(u,v) repeats itself for an infinite

number of values of u and v, only the N values of each variable in any

one period are required to obtain f(x, y) from F (u, v). In other words,

only one period of the transform is necessary to completely specify F(u,v)

in the frequency domain. Similar comments hold for f(x,y) in the spatial

domain.

The Fourier transform also exhibits conjugate symmetry since

F (u,v) F* (-u, -v) (3-2)

or more interestingly,

As mentioned earlier, it is often of interest to display the magnitude of the

Fourier transform for interpretation purposes.

18



The same observations hold for the magnitude of the two-dimensional

Fourier transforms, with the exception that the results are considerably

more difficult to interpret if the origin of the transform is not shifted to

the frequency point (N/2, N/2).

DISTRIBUTIVITY AND SCALING

It follows directly from the definition of the continuous or discrete

transform pair that

F fl(x,y) + f2 (x'y)} F if, (xy)) + F jf2 (xy)j and, in general

that

F if, (x,y). f2 (x,y) F ff1 (x,y)J . F f 2 (x'y)l

In other words, the Fourier transform and its inverse are distributive over
addition, but not over multiplication.

It is also easy to show that for two scalars a and b,

af(xy) 4ui aF(u,v)

and

f(ax,by) <4 1b F *u/a, v/b)

The two-dimensional, discrete convolution is formulated by letting

f(x,y) and g(x,y) be discrete arrays of size A X B and C X D, respectively.

As in the one-dimensional case, these arrays must be assumed periodic with

some period M and N in the x and y directions, respectively. Wraparound

error in the individual convolution periods is avoided by choosing

MPA + C -1 (3-9)

and

N>B + D - 1 (3.10)

19



The periodic sequences are formed by extending f(xy) and g(x,y) as

follows:

f(xy) 0 <x <A-1 and 01 y <B - 1

fe(x~y) "

0 A.,x<M- 1 or B~yN -1

and

f(x,y) 0<x4C - 1 and 04yD - 1

ge(X,y)-

0 C.xCM 1 or D,<,yN - I
)I

The two-dimensional convolution of f (x,y) and g (x,y) is given by
e

the relation
4

M-I N-I
f (Xy)*ge(xy) E E f (m'n) g (x - m, y- n) (3.11)
e e 0e eM-0 n-0

for x = 0, 1, 2, ... H - 1 and y - 0, 1, 2, ... N - 1. The M X N array

given by this equation is one period of the discrete, two-dimensional convo-

lution. If M and N are chosen as indicated above this array is guaranteed

to be free of interference from other adjacent periods. All computations

use these extended functions f (x,y) and g (X,y).
ee

AVERAGE VALUE

A widely-used definition of the average value of a two-dimensional

discrete function is given by he expression

1 N-1 N-1 If(x-y) 2 E f(xy)- f(0,0) (3.4)
N x-0 y-0

20
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CONVOLUTION and CORRELATION

We will now outline two Fourier transform relationships which consti-

tute a fundamental link between the spatial and frequency domains. These

relationships, called convolution and correlation, are of fundamental

importance in developing a firm understanding of image processing techniques

based on the Fourier transform.

CONVOLUTION
ii

The convolution of two functions f(x) and g (x), denoted by f(x)*g(x),

is defined by the integral

f(x)*g(x) () g(x - CL) d a (3-5)
-00

where a is the variable of integration.

Two-dimensional convolution is analogous in form to Eq. (3-5). For

two functions f(xy) and g(xy), we have

f(xy)*g(xy) ',def(.O ) g (x - CL, y - ) dod (3-6)

The convolution theorem in two-dimensions is summarized by the relations

f(xy)*g(x,y) 4m F(u,v)G(u,v) (3-7)

and

f(xy)g(x.y) F(uv)*G(u,v) (3-8)

21



From a practical point of view, it is often more efficient to compute

the discrete convolution in the frequency domain instead of using Eq. (3-11)

directly. The procedure is to compute the Fourier transforms of fe (xy) and

ge(x,y) byusing a fast Fourier transform (FFT) algorithm. The two transforms

are then multiplied and the inverse Fourier transform of the product will

yield the convolution function. A comparison by Brigham (1974) shows that,

for one-dimensional arrays, the FFT approach is faster if the number of points

is greater than 32. Although this figure is dependent on the particular

machine and algorithms used, it is well below-the number of points in a row

or column of a typical image.

CORRELATION

The correlation of two continuous functions f(x) and g(x) denoted by

f(x) og (x), is defined by the relation

f(x)°g(x) - f ( a.) g (x + a) d a (3-12)

To perform correlation one slides g(x) by f(x) and integrate the product

from -oo to oo for each displacement x.

The discrete equivalent of continuous correlation is defined by

M-1

f e(X)g e(x) E f (m) ge (x + m) (3-13)
m=O e

for x - 0, 1, 2, ... , M - 1. The same comments made above with

regard to f (x) and ge(X), the assumed periodicity of these functions, and

the choice of values for M, apply to this case.

Similar expressions hold for two dimensions. If f(xy) and g(xy)

are functions of continuous variables, their correlation is defined as

f(xjy)o g (xy) - J f f(aS) g (x + C6 y f ) d a do (3-14)

22



and for the discrete case we have

M-1 N-1
fe(xY)°ge (xy) - E f (m, n) ge (x4m, y+n) (3-15)

m-0 n=O

for x m 0, 1, 2, ... , M - 1 and y - 0, 1, 2, ... , N - 1. As in the case of

discrete convolution, fe (x,y) and ge (x,y) are extended functions, and M and

N are chosen according to avoid wraparound error in ie periods of the correla-

tion function.

For both the continuous and discrete cases the following correlation

theorem holds:
0.

f (x,y)° g (x*y)= F(u,v) G (u,v)

and
*0f(x~y) g ° (XY Fuv (u,v)

where "*" denotes the complex conjugate. Note: for discrete variables, all

functions are assumed to be extended and periodic.

One of the principal applications of correlation in image processing

is in the area of template or prototype matching, where the problem is to.

bind the closest match between a given unknown image and a set of images of

known origin. One approach to this problem is to compute the correlation

between the unknown and each of the known images. The closest match can

then be found be selecting the image that yields the correlation function

with the largest value. Since the resultant correlations are two-dimensional

functions, this involves searching for the largest amplitude of each function.

As in the case of discrete convolution, the computation of f (x,y)°ge (xy)

is often more efficiently carried out in the frequency domain using an FFT

algorithm to obtain the forward and inverse transforms.

THE FAST FOURIER TRANSFORM

The number of complex multiplications and additions required to imple-
2

ment Eq. (2-2) is proportional to N . This can be seen easily by noting

23
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[I 0
that, for each of the N values of u, expansion of the summation sign re-

il I rf N romplt.x mlliplcntions of f(x) by exp [-J2ux/N] can be 'omputed

,11CL ;ad sLured in a table for all subsequent applications. For this

reason, the multiplication of u by x in these terms is usually not considered

a direct part of the implementation.

In this section it is shown that, by properly decomposing the number

j of multiply and add operations it can be made proportional to N log 2 N. The

decomposition procedure is called the Fast Fourier transform (FFT) algorithm.

The reduction in proportionality from N2 to N log 2 N multiply/add operations

represents a significant savings in computation effort, as shown by the

figures in the table. It is evident from this table that the FFT approach

.4 offers a considerable computational advantage over a direct implementation

of the Fourier transform, particularly when N is relatively large. For

example, a direct implementation of the transform for N-8192 requires on the

order of three-quarters of an hour in a machine such as an IBM 7094. By

contrast, the same job can be done in this machine in about 5 sec. using an

FFT algorithm.

N2  N log N Computational Advantage
N (Conventional FT) (FFT3 (N/log2 N)

2 4 2 2.00

4 16 8 2.00

8 64 24 2.67

16 256 64 4.00

32 1,024 160 6.40

64 4,096 384 10.67

128 16,384 896 18.29

256 65,536 2,048 32.00

512 262,144 4,608 56.89

1024 1,048,576 10,240 102.40

2048 4,194,304 22,528 186.18

4096 16,777,216 49,152 341.33

8192 67,108,864 106,496 630.15

24



As pointed out previously, a two-dimensional Fourier transform can be

readily computed by a series of applications of the one-dimensional transform.

THE INVERSE FFT

Thus far, little has been said concerning the inverse Fourier transform.

It turns out that any algorithm for implementing the discrete forward

transform can also be used (with minor modifications in the input) to compute

the inverse.

For a two-dimensional square array we take the complex conjugate, that

is,

f*(x,y) 1 N-1 N-1 F*(uv) exp [-j2Tt(ux + vy)/N]

u-0 v-0

which we see is in the form of the two-dimensional forward transform. It

follows, therefore, that if we input F* (u,v) into an algorithm designed to

compute the forward transform, the result will be f* (x,y). By taking the

complex conjugate of this result we obtain f(x,y). In the case where f(x)

or f(x,y) are real, the complex conjugate operation is unnecessary since

f(x) - f*(x) and f(x,y) - f*(x,y) for real functions.

The fact that the two-dimensional transform is usually computed by

successive passes of the one-dimensional transform is a frequent source of

confusion when using the above technique to obtain the inverse. When using

a one-dimensional algorithm to compute the two-dimensional inverse, the method

is not to compute the complex conjugate after each row or column is processed.

Instead, the function F*(u,v) is treated as if it were f(x,y) in the forward,

two-dimensional transform procedure. The complex conjugate of the result

(if necessary) will yield the proper inverse f(x,y).

25
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A number of methods exist which generalize the Fourier transform

either by considering the class of Fast Unitary Transforms (which include

the FFT) or by considering group characters. The practical interest here

is in the computational efficiency inherent in these more general transforms.

For an arbitrary sequence of functions, the Gram-Schmidt process

generates a sequence of orthogonal functions. Any continuous function can

be expressed via this orthogonal set with minimum L2 error; for certain

classes of functions the convergence is uniform. Most inportant among these

are the Haar functions, which assume 2 values, and the Walsh functions with

values + 1. Both Both have discrete analogies and Fast Discrete Haar/Walsh
transforms are computable, FHT and FM. Because of the simplicity of the,

basic functions much greater computational savings can be obtained than from

FFT (up to 30 times faster than FFT).

Advantageous use can be made of FHT/FWT in certain applications; e.g.

in data transmission/reconstruction in which one represents a given signal

in some sense and reconstruct it from the minimal representation. A number

of serious difficulties arise with these transforms due to the fact that

the relation with the circle has been lost. For example: 1) no natural

interpretation in terms of frequency exists (the "sequency" viewpoint of

Harmuth for Walsh functions lacks physical meaning); 2) due to absence of

the circle relationship the important convolution theorem is not available

(forced analogies to a convolution theorem via dyadic convolutions have been

made but their interpretations are not clear).

The striking advantages of FWT and FHT over the usual FFT in computa-

tional effort should motivate further investigation in this area.

The historical situation regarding orthogonal functions at the

beginning of the twentieth century was one of well known and useful kinds of

such functions: the trigonometric functions which occur in Fourier series;

orthogonal polynomials such as those of Legendre, Hermite, and Laguerre;

29
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Bessel"s functions, the Sturm-Liouville series, and other special functions.

But, there was no general theory embracing all such systems of functions.

The Hungarian mathematician, Alfred Haar, was concerned with con-

vergence properties of series of orthogonal functions, and also constructing

a new set (now called the Haar system) of such functions. He defined a set

of orthogonal functions each taking essentially only two values such that

the formal expansion of an arbitrary continuous function in those functions

converges uniformly to the given function, a property not possessed by

orthogonal sets known up to that time.

In 1923, J.L. Walsh published a set of orthogonal functions which

are complete on the interval [0.1); they take only the values + 1, and are

similar in oscillation and many other properties to the trigonometric

functions. They have turned out to have important practical applications

in calculation.

The limits of the usefulness of these functions both in theoretical

work and in engineering applications still seem to be undetermined.

Traditionally, the theory of communication has been based on the

complete, orthogonal system of sine and cosine functions. The concept of

frequency is defined as the parameter f in sin 2T ft. and cos 2u ft. The

question arises whether there are other systems of functions on which

theories of similar scope can be based, and that lead to equipment of

practical interest.

The parameter in C sin 21nO and r2 cos 21TE gives the number of

oscillations in the interval -i/2-' 41/2 (that is, the normalized frequency

i=fT). One may interpret i as "one half the number of zero crossings per

unit time" rather than as "oscillations per unit time". (The zero crossing

at the left side, 6 = -1/2, but not the one at the right side, e +1/2, of

the time interval is counted for sine functions).
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The parameter i also equals one half the number of zero crossings in

the interval -1/2 .E01/2 for Walsh functions. In contrast to sine-cosine

functions, the sign changes are not equidistant. If i is not an integer,

then it equals "one half the average number of zero crossings per unit time".

The term "normalized sequency" has been introduced for L and 0 - i/T is

called the normalized sequency. Sequency in zps = 1/2 (average number of

zero crossings per second).

The general form of a sine function V sin (2nft+c) contains the

parameters amplitude V, frequency f, and phase angle a. The general form

of a Walsh function V sal (OT, t/T + t /T) contains the parameters amplitude,

1 
0

V, sequency, 0 , the delay, to, and' time base, T. The normalized delay,

t /T, corresponds to the phase angle. The time base, T, is an additional
0

parameter and it causes a major part of the differences in the applications

of sine-cosine and Walsh functions.

So far, Walsh functions are the only known functions with desirable

features comparable to sine-cosine functions for use in communications.

Development of semi-conductor technology has imparted practical interest

in them at this time. Generally' speaking, the transition from sine-cosine

functions to other complete systems means a transition from linear, time-

invariant components and equipment to linear, time-variable components and

equipment, which, of course, constitute a much larger class. The mathemati-

cal theory of Walsh-Fourier analysis corresponds to the Fourier analysis

used for sine-cosine functions. There is no theory of similar scope for

block pulses, because they are incomplete.

The sal and cal transforms of Walsh-Fourier analysis are defined by

a (1i) =f F(9) sal (u,8) de

a( = f F(8) cal (U,e) de
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Walsh-Function Filters - For a sequency low pass filter based on Walsh

functions the input signal, F(E), is transformed into a step function.

FIT(O), with steps of a certain width, by integrating F(O) during an interval

equal to the step width. The amplitudes of the steps are chosen so that

Ftt(9) yields a least-mean-square approximation of F(O). In addition,

Ftl(e) is delayed with respect to F(O) by one step width.

The number of samples obtained is equal to twice the cut-off

sequency. Hence, the sampling theorems of Fourier analysis permit the

comparison of frequency and sequency filters.

-Theorems for the multiplications of Walsh functions have been

proven. These are:

cal (k, e) cal (i, e) call k i, el
sal (k, 8) cal (i, 8) - salt i G (k-l) + 1,e

sal (k, 9) sal (i, 0) - cal l(k-l) (i-l),el

where the symbol1indicates modulo 2 addition. Note that the product of

two Walsh functions yields only one Walsh function. Therefore, the amplitude

modulation of a Walsh carrier yields only one sequency sideband as compared

to the two sidebands obtained when a sine carrier is modulated. A typical

application of the multiplication theorems of Walsh functions is in the

design of sequency-bandpass filters.

Digital Filtering and Multiplexing - One of the most promising aspects of

Walsh functions is the case with which filters and multiplex equipment can

be implemented as digital circuits. The reason is that numerical Walsh-

Fourier transformation and numerical sequency shifting of signals require

summations and subtractions only. In the case of sine-cosine functions, the

corresponding operations require multiplications with irrational numbers.
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A digital filter based on Walsh functions can be readily obtained.

The input signal passes first through a sequency low-pass filter then

transforms it into a step function. This step function is sampled and the

samples are transformed into numbers by an analog/digital converter. A

series of these numbers is stored in a digital storage. A Walsh-Fourier

transform of this series is obtained by performing certain additions and

subtractions in an arithmetic unit. Some or all of the obtained co-

efficients, that represent sequency components, may be suppressed or

altered - in effect, a filtering process. An inverse Walsh-Fourier trans-

form yields the filtered signal as a series signal by digital/analog con-

verter. Since there is a fast Walsh-Fourier transform just as ther is a

fas Fourier transform, the arithmetic operations in a digital sequency filter

are not only simpler than in a digital frequency but can be performed faster.

One of the features of Walsh functions that makes them of some
4interest in signal processing is the fact that their amplitudes are given

precisely by a single bit, so that their use does not directly contribute to

roundoff noise. The basis vectors of symmetry analysis offer the same

attraction with, additionally, for low orders of input data frames N, some

economy of computations by reason of the zeros.

OTHER IMAGE TRANSFORMS

The Fourier transform is the transform most often used in image

processing applications; there are other transforms which are also of

interest in this area.

The one-dimensional, discrete Fourier transform is one of a class

of important transforms which can be expressed in terms of the general

relation

N-1
T(u) = f(x)g(x,u) (5-1)

x-0
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where T(u) is the transform of f(x), g(x,u) is the forward transformation

kernel, and u assumes values in the range 0, 1, .. ,N-i. Similarly, the

inverse transform is given by the relation

N-1
f(x) E T(u)h(xu) (5-2)

* U-0

-he~re h(x,u) is thie inverse transforniation kernel and x assumes values in

>4 the ranges 0, 1, ... , N-i. The nature of a transform is determined by the

properties of its transformation kernel.
.A

9 For two dimensional square arrays the forward and inverse transforms

are given by the equations

N-i N-i
T(u,v) E E f(x~y)g(x,y,u,v) (5-3)

X-0 y-0

and

N-1 N-i
f(x,y) E T(u,v,)h(xy,u,v) (5-4)

u-0 v-0

where, as above, g(x,y,u,v) and h(,c,y,u,v) are called the forward and

inverse transformation kernels, respectively.

The two dimensional Fourier transform has the kernel

g(x,y,u,v) , "I fx -j2T ux + vy) N

which is separable and symmetric since

g(X,y,U,v) g1 (x,U)g1(y,v)

1 1exp [7-j2Ttux/NJ ex - j2rvy/Ny
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It is easily shown that the inverse Fourier kernel is also separable and

symmetric.

A transform with a separable kernel can be computed in two steps,

each requiring a one dimensional transform. First, the one dimensional

transform is taken along each row of f(x,y), yielding

N-1
T(x,v) - E f(x,y)g2 (Y,V) (5-5)

|. y-O

for x,v = 0, 1, 2, ..., N-1. Next, the one dimensional transform is taken

along each column of T(x,v); this results in the expression

N-1
T(u,v) = E T(x,v)g 1(X,U) (5-6)

x-O

for u,v = 0, 1, 2, ..., N-1. The same final results are obtained if the

transform is taken first along each column of f(x,y) to obtain T(y,u) and

then along each row of the latter function to obtain T(u,v). Similar

comments hold for the inverse transform if h(x,y,uv) is separable.

If the kernel g(xy,u,v) is separable and symmetric, Eq. (5-3) can

also be expressed in the following matrix form:

T = AFA (5-7)

where F is the NXN image matrix, A is an NXN symmetric transformation matrix

with elements aij = 91 (i,j), and T is the resulting NXN transform for

values of u and v in the range, 0, 1, 2, ..., N-1.

To obtain the inverse transform we pre-multiply and post-multiply

Eq. (5-7) by an inverse transformation matrix B.
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If B -1

If B A it then follows that

F = BTB

which indicates that the digital image F can be recovered completely from

its transform. If B is not equal to A - 1  then we obtain an approximation

to F, given by the relation

F - BAFAB

A number of transforms, including the Fourier, Walsh, and Haar

transforms, can be expressed in this form. An important property of the

resulting transformation matrices is that they can be decomposed into

products of matrices with fewer non-zero entries than the original matrix.

This result, first formulated by Good (1958) for the Fourier transform,

reduces redundancy and, consequently, the number of operations required to

implement a two-dimensional transform. The degree of reduction is equiva-

lent to that achieved by an FFT algorithm, being on the order of N log2 N

multiply/add operations for each row or column of an NXN image.

Walsh Transform

When N = 2n
, the discrete Walsh transform of a function f(x),

denoted by W(u), is obtained by substituting the kernel

n-l
g(x,u) I (-l) bi (x)bn -l -i

(u )  (5-8)
i=0

into Eq. (5-1). In other words,

N-1 N-1

W(U) I - f(x) (-1) b (x)b (u) (5-9)
N x=O i0 *1
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where bk(z) is the kth bit in the binary representation of z. For example,

if n = 3 and z - 6 (110 in binary), we have that bo(z) -0,b (z) - 1, and

b2 (z) - 1.

The values of g(xu), excluding the 1/N constant term, are listed

below for N - 8. The array formed by the Walsh transformation kernel is

Values of the Walsh trans-
formation kernel for N - 8.

0 .\..,.,,,,,
+ + + + ++0 ++ + + +

3 + + + +

$ : 4 + +S4 + 4 + -- + -

3 + - + -- +-

7 + - -+ +-

a symmetric matrix whose rows and columns are orthogonal. These properties,

which hold in general, lead to an inverse kernel which is identical to the

forward kernel, except for a constant multiplicative factor of I/N. Thus,

the inverse Walsh transform is given by

N-i n-i

f(x) E W(u) n (-I) b 1 (x)b n-li(u) (5-10)
u=0 i'0

Notice that, unlike the Fourier transform which is based on trigono-

metric terms, the Walsh transform consists of a series expansion of basis

functions whose values are either plus or minus one.

It is also of interest to note that the forward and inverse Walsh

transforms differ only by the I/N term. Thus, any algorithm for computing

the forward transform can be used directly to obtain the inverse transform

simply by multiplying the result of the algorithm by N.
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The forward and inverse Walsh transforms are also equal given by

N-i N-I n-i
W(uv) - Z f(x,y) 1 (-1) bi(x)bn -.. 1 (u) + bi (y)bn-i i(v )

x-nO y-O iinO
~(5-il)

and

N-I N-i n-i
f(xy) E E W(u,v) IT (-l) v (x)bn (u)+b (Y)bn (v)f~~)=N uO v-O issO -i n-i

(5-12)

Thus, any algorithm which is used to compute the two dimensional forward

Walsh transform can also be used without modification to compute the inverse

transform.

The Walsh transform can be computed by a fast algorithm identical in

form to the successive doubling method for the FFT. The only difference is

that all exponential terms WN are set equal to one in the case of the fast

Walsh transform (FWT).

The Walsh transform is real, thus requiring less computer storage

for a given problem than the Fourier transform, which is in general complex

valued.

39

" 39



S EC TIO0N I V

/41



REFERENCES:

Arking, Lo and Rosenfeld: "A Fourier Approach to Cloud Motion Estimation,"
Journal of Applied Meteorology, Volume 17, pp 375-744.

Bracewell R. The Fourier Transform and its Applications, 2nd Edition,
McGraw-Hill, 1974.

Childers and Durling, Digital Filtering and Signal Processing, West
Publications, 1975.

Leese, Novak and Clark, "An Automated Technique for Obtaining Cloud Motion
4from Geosynchronous Satellite Data using Cross Correlation',' Journal of

Applied Meteorology, Volume 10, 1971, pp. 118-132.

Leese and Epstein, "Application of Two-Dimensional Spectral Analysis to the
Quantification of Satellite Cloud Photographs," Journal of Applied
Meteorology, Volume 2, 1963, pp. 629-644.

Lo, Mohr and Parikh, "Applications of Fourier Transform Methods of Cloud
Movement Estimation to Simulated and Satellite Photographs, N. of Maryland."
Computer Science Center Technical Report, TR-292, January, 1974.

Oppenheim and Schafer, Digital Signal Processing, Prentice Hall, 1975.

Rosenfeld and Kak, Digital Picture Processing, Academic Press, 1976.

Schreiber and Ferell, Ed., "Applications of Walsh Functions and Sequency

Theory',' IEEE, 1974.

43

Jk .... .... .. . ..43



SECTION V

PROGRAM DESCRIPTION AND USE
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INTRODUCTION

The program which controls' all of the calculations and output related

to this task is called WETCOR. It is structured in modular form and is

based on a keyword input format. This arrangement facilitates making a large

number of runs using different data input, different output formats and a

variety of computations while requiring simple keyword card changes.

The program reads data from a permanent file, sets up arrays of

specified size and computes the auto correlation or cross correlation matrix

for the two arrays via a very efficient two dimensional Fast Fourier Transform

(FFT) code. The algorithm was between 5 and 20 times faster than other FFT

implementations on the benchmark cases we ran. Output from the use of a two

dimensional square wave test case was fully consistent with theoretical

analysis. This test was used because of its simple structure, and well

known properties while at the same time providing a good check on the

accuracy and correctness of the code.

During the development of the WETCOR package parallel efforts con-

sidered alternatives to the FFT approach. Much attention was given to methods

which offered savings in processing time. Contemporary journals on informa-

tion and image processing contain an abundance of references to Walsh, Haar

and other orthogonal families of functions and their corresponding "fast

transforms." The greatest strength of both the Haar and Walsh transforms

is the reduction in processing times by factors of 2 to 20 over comparable

times using the FFT algorithm. However, as related to this specific problem

they are not very useful, at the present time. The principal drawback is

the difficulty in interpreting and/or decoding the convolution/deconvolution

equations which are used in the discrete fast Haar and fast Walsh transforms.

WETCOR does correlation analyses of data arrays which are based on

raster scans of weather patterns. The input data are stored in bytes, each

containing the pixels from a raster. A portion of an input raster is select-

ed as a base array. Another array is selected and correlated against the
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base array using the Fast Fourier Transform.

The program prints the initial data and the final correlation array

in a compact exponential form. Other options for printing intermediate

results and for handling the data differently are within the program's

capabilities.

The program structure is modular. Additions and modifications are

easily made.

The main structure of WETCOR is modular with the choice of the order

of execution of the modules controlled by the order of the input cards.

Most of the modules reset parameters. One of the main modules reads in and

sets up the base array. The other reads in the second array and does the

correlation using the Fast Fourier Transform.

The size of the array extracted from the file WETDAT is variable. This

array is defined by its time and the position of its corner. If its size

extends beyond the array stored on WETDAT, zeros are filled in. This array is

then packed into an array whose dimensions must be powers of 2, which is a

restriction imposed by the Fast Fourier Transform routines used. The average

is subtracted from the array and the edges are rounded to avoid aliasing

effects.

Both arrays are Fourier transformed; the transforms combined; and the

reverse transform performed. This final array is printed. It may also be

searched for the maximum and a scaled output produced which emphasizes the

maximum. A centered output is available. The final array may be output on a

special file.
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INPUT

A - Punched Card

The input to WETCOR is free field keyword input. Each card consists

of a keyword followed by any number of fields. The keyword and fields are

separated by break characters: either "(" or ",". The scanning of each

card is terminated by either ")", the end of the card, or "." followed by

20 blanks. The remainder of the card can be used for comments. (A card with

C in the first column is treated as a comment card which will appear in the

output).

The basic deck consists of:

Ist - title card - 80 columns used for labelling.

2nd - Nth - keyword cards - (control the type and amount of

processing to be done).

N + ist - End of 7/8/9 - (terminates the run).

The keywords are described below. The fields are indicated as I for

integer, R for real, and H for hollerith or character strings. An integer

has only a sign and an integer string. A real has a "." and/or "E". A

field containing any other character will be interpreted as a character

string. If an input field has no characters or only blanks, it is treated

as not being given and default values are assigned. For numerical data

this usually means the value zero is used. The default values given below

are the values used if that field is not used or the values used if that

keyword is not used to set the values. The integers in parentheses indicate

the field used; e.g. for the first case given: BASE ( ,7311,2261) does not

use the first field; column and line numbers are given in the next 2 fields;

the remaining fields are not used.
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The keywords available can be divided into four basic groups:

1) Keywords which must be used in all runs.

2) Keywords which control/identify the structure of the data being

used.

i 3) Keywords which identify the operations to be performed.

4) Keywords which control the output (format and amount of

information).

11 1. Keyword cards required for every run: BASE, GO

'I

(a) BASE (Al, A2, A3, A4, A5, A6, A7, A8) - the Base Keyword reads

in the first base array and adjusts it to specifications.

Al - integer - time in form hhmm. If Al is not specified the
next data file is used.

If Al is less than -2400, data is generated for

testing (see below).

A2 - integer - column number

A3 - integer - line number of the upper left hand corner
of the picture

A4 - integer - data value to be used (default: 1000)

A5 - integer - lower limit - x axis (to be set)

A6 - integers- upper limit - x axis (to be set)

A7 - integer - lower limit - y axis (to be set)

A8 - integer - upper limit - y axis (to be set)

(b) GO (Al, A2, A3, A4, A5) - The GO keyword reads in the second

array, adjusts it and does correlation calcula-

tions.

Al - integer - time in form hhmm. If it is not given, the next
data file is used.

A2 - integer - column number

A3 - integer - line number

A4 - integer - column shift (if desired)

A5 - integer - line shift (if desired)
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The shifts are applied to the data portions on WETDAT when new data

is requested. The shifts are applied to the stored data when autocorrelation

is being calculated.

2. Keyword cards which control/identify data structure.

(a) EVERY (Al, A2, A3, A4) - indicates column and line sampling
rate on WETDAT.

Al - integer - column rate of array to be correlated
(Go array)

A2 - integer - line rate (default: use old values)

A3 - integer - column rate of base array

A4 - integer - line rate (default if A3, or A4 is blank:
use values for other array.

Default if the card is terminated
early; use old values)

The defaults at load time are 1,
2, 1, 2.

(b) REWIND rewinds the file WETDAT.
Searching is only done in forward
direction; if an earlier file is
to be used a rewind is necessary
before searching.

(c) INDIM (Al, A2, A3) sets input array dimensions. This
is not restructed to powers of 2
but will usually be 1/2 of DIM
value.

Al - integer- set to 1 for GO array
set to 2 for BASE array

A2 - integer column dimension

A3 - integer line dimension (default: column
dimension). The defaults at
load time are all 32.

(d) DIM (Al, A2, A3) sets dimensions of working arrays.
These must be powers of 2. The
card fields are identical to those
of INDIM. The defaults at load
time are all 64.
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(e) PRP (Al, A2, A3, A4, A5, A6, A7, A8) - sets the parameters

controlling the routine which
prepares the input arrays for the
Fast Fourier transformation.
Empty fields are treated as zeros.

The load time defaults for both

arrays are given in parentheses

at the right.

Al - integer - choses array as with INDl4

A2 - integer - fset to 0: center array

set to 1: use shift values in 5 and 6

default: 1

A3 - integer - edge treatment.If several choices are wanted,

sum the corresponding values.
The edges of the input array are

scaled by cos 2. This edge round-
ing can be eliminated by defining
the edge size to be 0. The edge
treatment parameter values are:

1: Use values 7 to define edge size in x-direction
instead of - dimension.

16
2: Use value 8 to define edge size in y-direction instead

1
of dimension.

4: Zero edge of output, not the edge of the minimal array.

8: Do not propagate the edges of the input array (working

array set to zero outside input range).

16: Set input array edges equal to input average.

default: 16

A4 - integer - Normalization parameter

0: Subtract average and divide by average

1: Divide by average; do not subtract average

2: Subtract average; do not divide by average

3: Do not normalize

default: 2

A5 - integer - z-shift Used if field 2 is non zero

A6 - integer - y-shift
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A7 - integer - x edge size Used if field 3 requires edge sizes.

A8 - integer - y edge size

default: + for A5 through A8: 0.

3. Keyword Cards which identify the operations to be performed.

(a) PEAK control the search for a peak In the correlation

NO PEAK~array (default at load time: NOPEAK)

7, (b) AUTO control the generation of the second array from the
base array

NAUTO for autocorrelation testing (default at load time:-j NAUTO).

4. Keyword Cards controlling output

(a) PRINTH (Vl, V2, ..., Vn) - controls which arrays are to be

printed. Each field is an integer indicating a

particular array to be printed during the calculation.

The default is (12, 11, 6). The acceptable values for

V and the corresponding output are as follows:

V 1: Working version of GO array

2: Working version of Base array (printed for each
calculation)

3: Transform of array to be correlated

4: Transform of base array

5: Direct product of transforms

6: Inverse transform of product; (correlation array)

7: Correlation array shifted so that origin is centered

11: GO array to be correlated as read from WETDAT

12: Base array as read from WETDAT

13: Working version of base array when generated
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The output arrays are in a compressed format. Each array entry is

multiplied by the scaling factor printed at the top of the array. The

three most significant difits greater than 1 are then output with a leading

symbol indicating the sign aud the power of 10 which has been supressed.

Symbols for positive blank + * P P ***

negative - = X M M***
10 0 1 2 3 4

. (b) PRINTB (Al) Prints prepared base array

* IAL REAL Scale factor to be used. (Default is 1.)

(c) SCALE (Al, A2)Sets output scale factors. These are adjusted

during calculation.

Al - REAL - Scale for GO array to be correlated

A2 - REAL - Scale for BASE array. (Default: same scale for
both).

The load time default for both is 1.

(d) TITLE Causes the next card to be read and used as a

new title rard.

(e) PRINT ) Causes the keyword cards to be printed or not
printed.

NOPRINT Default is PRINT

WETDAT is read by using unformatted READ statements. The file is

structured into records containing integer values as follows:

Record

I hour and initial column number
2-92 line number, data values for that line

I
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Ninety-one lines are expected - each of which is expected to have at

least 90 values. These numbers are in common /WETDAT/. The column and line

numbers are expected to change in steps of 1 and 2 respectively, unless

changed by the EVERY keyword. This could be made dependent on the more

recent WETDAT files which have the steps and other information in a longer

first record.

CORARY is written by unformatted WRITE stetements. Each array is a

file containing 3 records. The first record consists of 120 characters

containing the data and time when the file is written. The second record

contains 16 quantities: the array dimensions, the sampling rates, the

operative keyword (probably GO), and an array of 11 items containing the

input fields. The third record is the data array.

The normal output from WETCOR consists of the keyword cards which

control the run and the arrays specified by those keywords. The arrays

are given in the abbreviated numerical form described under PRINT H. The

correlation array may be output on CORARY.

A number of methods exist which generalize the Fourier transform

either by considering the class of Fast Unitary Transforms (which include

the FFT) or by considering group characters. The practical interest

here is in the computational efficiency inherent in these more general

isforms.

For an arbitrary sequence of functions, the Gram-Schmidt process

generates a sequence of orthogonal functions. Any continuous function can

be expressed via this orthogonal set with minimum L2 error; for certain

classes of functions the convergence is uniform. Most important among

these are the Haar functions, which assume 2 values, and the Walsh functions

with values + 1. Both have discrete analogies and Fast Discrete Haar/Walsh

transforms are computable, FHT and FWT. Because of the simplicity of the

basis functions much greater computational savings can be obtained than from
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FFT (up to 30 times faster than FFT).

Advantageous use can be made of FHT/FWT in certain applications: date

transmission/reconstruction in which one represents a given signal in some

sense and reconstruct it from the minimal representation. A number of serious

difficulties arise with these tranpforms due to the fact that the relation

.4 with the circle has been lost. For example: 1) no natural interpretation

in terms of frequency exists (the"sequency" viewpoint of Harmuth for Walsh

functions lacks physical meaning); 2) due to absence of the circle relation-4
ship the important convolution theorem is not available (forceo analogies

to a convolution theorem via dyadic convolutions have been made but their

interpretations are not clear).

The striking advantages of FWT and FHT over the usual FFT in

computational effort should motivate further investigation in this area.

The historical situation regarding orthogonal functions at the

beginning of the twentieth century was one of well known and useful kinds

of such function: the trigonometric functions which occur in Fourier series;

orthogonal polynomials such as those of Legendre, Hermite, and Laguerre;

Bessel's functions, the Sturm-Liouville series, and other special functions.

But, there was no general theory embracing all such systems of functions.
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